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Abstract. We have performed a NLO QCD global fit of BCDMS, NMC, H1 and ZEUS data with full
account of point-to-point correlations using the Bayesian approach to the treatment of systematic errors.
Parton distributions in the proton with their experimental uncertainties, including both statistical and
systematic, are obtained. The gluon distribution in a wide region of x is found to be softer than the gluon
distribution extracted in standard global analyses which include prompt photon data. We obtain a robust
estimate of αs(MZ) = 0.1146± 0.0036 (≥ 75% C.L.) based on Chebyshev’s inequality, which is compatible
with an earlier determination of αs from the DIS data, but is less dependent on high-twist effects.

1 Introduction

Recently it has been argued in [1] that the parton distribu-
tion functions (PDFs) obtained from global data analyses
(e.g. [2–4]) have principal shortcoming because the errors
of the parameters are not known. Indeed, a procedure of-
ten used to evaluate the spread of the predictions given by
these PDFs is to compare the results of the calculations
with various PDF parametrizations. It is evident that if
different authors use the same theoretical model and sim-
ilar data sets, this procedure cannot account for the real
uncertainties originating from the statistical and system-
atic fluctuations of the data samples which are used in
the extraction of the PDFs. These uncertainties should be
evaluated by propagating these uncertainties into the er-
rors of the PDF parameters. In modern experiments the
dominating sources of uncertainty are usually the system-
atic errors. A complete treatment of the systematics is not
possible if only the combined errors from various sources
are presented in the publication. Fortunately, for the re-
cent deep inelastic scattering (DIS) data from HERA, and
for the data from previous experiments at the SPS, the
full error matrices are available. Deep inelastic scattering
of charged leptons remains the most direct source of in-
formation on PDFs and a careful analysis of these data
including propagation of the systematics is valuable in
exploring nucleon structure. The handling of statistical
fluctuations is well understood on the basis of probability
theory. In contrast, the handling of the systematic errors
has been the subject of various approaches.

In one of the approaches, based on the classical treat-
ment of probability, one considers the systematic shifts as
additional unknown systematic error parameters arising
from a lack of complete understanding of the experimen-
tal apparatus. Within this approach one usually tries to
determine these parameters using some statistical estima-
tor, e.g. χ2, which is minimized as a function of these

free parameters. The extracted values are then considered
as a reasonable approximation to the true values of the
systematic-error parameters, and the data are corrected
for these systematic shifts. The systematic errors of the
theoretical model parameters are evaluated by inverting
the full error matrix, which includes both the physical
and systematic-error parameter derivatives. In most cases,
the only kinds of systematic errors which can be deter-
mined in this classical approach are the errors connected
to the overall relative normalization of the data. Other
systematic-error parameters are often strongly correlated
with each other and also with the physical parameters.
Consequently, as a result of these correlations, the fits to
these systematic-error parameters can result in unreason-
able central values with large errors.

The approach used in this paper is based on the
Bayesian treatment of systematic uncertainties. In this
approach these are considered as random variables with
postulated or evaluated probability-distribution functions.
The systematic errors are estimated within the general
statistical procedures along with the statistical errors. In
the analysis of modern DIS data, which generally have
a number of significant systematic errors, this approach
offers a unique possibility to account for point-to-point
correlations in the data. We use this Bayesian approach
to perform a complete propagation of the systematic un-
certainties in the DIS data into the uncertainties of the
resulting PDF parametrizations.

2 Theoretical and experimental input

2.1 Data samples used in the global fit

Cross-section data for the deep inelastic scattering of
muons and electrons on hydrogen and deuterium targets
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Table 1. The number of the data points (NDP) and χ2/NDP
for the analysed data sets. The number of the independent
systematic errors (NSE) and the diagonalized average bias (bD)
are also given

Experiment BCDMS NMC H1 ZEUS total

NDP 558 190 147 166 1061
χ2/NDP 0.97 1.43 0.91 2.00 1.20
NSE 10 13 5 20 48
bD -0.04 -0.05 0.23 0.20 0.02

[5–8] are used. The following cuts are used to reduce the
contribution of higher-twist effects:

W ≥ 4 GeV, Q2 ≥ 9 GeV2,

where W and Q2 are the usual DIS variables. The number
of data points for each experiment after the cuts are given
in Table 1. For the data from the ZEUS collaboration the
asymmetric systematic errors have been averaged. For the
BCDMS data we assume a complete correlation of system-
atic errors for the proton and deuterium cross sections. As
is evident from the table, the total number of independent
systematic errors is rather large, and it would be difficult
to make a fit in the classical approach.

2.2 Probability model of the data

If experimental data with K sources of multiplicative sys-
tematic errors are explicitly described by a particular the-
oretical model, the data can be presented in the Bayesian
approach as follows:

yi = (fi + µiσi) ·
(

1 +
K∑

k=1

λksk
i

)
,

where fi = fi(θ0) is the value predicted by the theoretical
model with parameter θ0, µi and λk are independent ran-
dom variables, σi are the statistical errors and sk

i are the
systematic errors from the k-th source. Here, i = 1 · · ·N ,
where N is the total number of points in the data set. If
the data originate from a data sample with a large num-
ber of events per bin, then the µ values are normally dis-
tributed. As regards the λ parameters, the only assump-
tion we make is that they have zero average value and
dispersions which are equal to 1. Within this ansatz the
individual measurements are correlated and the correla-
tion matrix Cij is given by

Cij =
K∑

k=1

fis
k
i fjs

k
j + δijσ

2
i ,

where δij is the Kronecker symbol. To obtain the estimator
of the parameter θ0 we minimize the quadratic form

χ2(θ) =
N∑

i,j=1

[fi(θ) − yi]Eij [fj(θ) − yj ], (1)

where Eij is the inverted correlation matrix. It should be
noted that throughout this paper the normalization errors
within this formalism are treated in the same way as the
other systematic errors. All systematic errors are regarded
as multiplicative, which is usually the case for counting ex-
periments. The minimization is performed using the MI-
NUIT package [9] augmented with the subroutines of [10]
that improve the numerical stability of the calculations.

If the λk are normally distributed and sk
i � 1, the val-

ues {yi} obey the multidimensional Gaussian distribution
with correlations, and our estimator θ̂ has a minimal possi-
ble dispersion. One may believe that the systematic errors
calculated from the propagation of the uncertainties in the
parameters of the apparatus or in the Monte Carlo cor-
rections are distributed in a Gaussian way. It was shown
in [11] that even if this is not the case, the dispersion of
our extracted parameters is smaller than the dispersion
of the parameters extracted from the simple χ2 classical
approach without account of correlations. The statistical
properties of the parameter estimators based on the co-
variance matrix of the measurements are discussed in [12].
The main conclusion of that paper is that these estima-
tors can be biased even in the limit of large statistics.
A bias arises if measured values (i.e. fluctuating values,
rather than expected values) are used in the estimate of
the covariance matrix. In this paper, since the covariance
matrix is constructed using the predicted average values
of the measurements, our estimators are asymptotically
unbiased.

2.3 QCD input

The physical model for fitting the data samples is based on
the parton model with a pQCD evolution of the gluon and
light-quark distributions. The contributions of c-quark and
b-quark are calculated using the LO formula1 of [13], and
setting mc = 1.5 GeV and mb = 4.5 GeV. The renormal-
ization/factorization scale is set to (Q2 + 4m2

c,b)
1/2. The

initial PDFs are defined at the value of Q2
0 = 9 GeV2 and

are evolved using NLO DGLAP equations [15] within the
modified minimal subtraction (MS) factorization scheme
[16]. The QCD evolution program has been tested as sug-
gested in [17], and checked to a numerical precision of
O(0.1%) in the kinematic region of the data included in
this analysis. We start from the rather general and widely
used expressions for the PDFs

xqi(x, Q0) = Aix
ai(1 − x)bi(1 + γi

1
√

x + γi
2x), (2)

and then reduce the number of free parameters, while
keeping the quality of the fit to the data. The resulting
expressions for the PDFs at Q0 are

xuV (x, Q0) =
2

NV
u

xau(1 − x)bu(1 + γu
2 x),

1 We have checked that accounting for the NLO contribution
to the heavy-quark production calculated in accordance with
[14] changes the fitted parameters by less that one standard
deviation
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xuS(x, Q0) =
AS

NS
ηuxasu(1 − x)bsu ,

xdV (x, Q0) =
1

NV
d

xad(1 − x)bd ,

xdS(x, Q0) =
AS

NS
xasd(1 − x)bsd ,

xsS(x, Q0) =
AS

NS
ηsx

ass(1 − x)bss .

xG(x, Q0) = AGxaG(1 − x)bG .

We do not consider NV
u , NV

d and AG as free parame-
ters. These are calculated from the other parameters using
number and momentum conservation for the partons. The
value of NS is defined by the relation

2
∫ 1

0
x
[
us(x, Q0) + ds(x, Q0) + ss(x, Q0)

]
dx = AS .

After a few trial fits it is found that ηu for the sea is well
compatible with unity and it is then fixed at this value.
We fix ηs = 0.5 for the strange sea, which is compati-
ble with CCFR findings [18] and fix asu = asd = ass,
bss = (bsu + bsd)/2, because the electron- and muon-
scattering data used in this analysis do not allow for a
separate determination of these parameters.

We obtain the strong coupling constant αs(Q) from
the fitted parameter αs(MZ) by numerically solving the
NLO renormalization equation

1
αs(Q)

− 1
αs(MZ)

=
β0

2π
ln
(

Q

MZ

)
+β ln

[
β + 1/αs(Q)

β + 1/αs(MZ)

]
,

where
β0 = 11 − 2

3
nf , β =

2πβ0

51 − 19
3 nf

.

This approach avoids the uncertainties originating from
approximations based on the expansion in inverse powers
of ln(Q). The uncertainties are ∼ 0.001 if αs is evolved
from O(GeV) to MZ (cf. [19]), i.e. are comparable with the
standard deviation of αs(MZ). The number of the active
fermions nf is changed from 4 to 5 at Q = mb, while
keeping the continuity of αs(Q).

2.4 Corrections to the basic formulae and data

2.4.1 Target-mass correction (TMC)

In addition to the pure pQCD evolution we apply a target-
mass correction [20] using the relation

FTMC
2 (x, Q) =

x2

τ3/2

F2(ξ, Q)
ξ2 + 6

M2

Q2

x3

τ2

∫ 1

ξ

dz
F2(z, Q)

z2 ,

where

ξ =
2x

1 +
√

τ
, τ = 1 +

4M2x2

Q2

and M is the nucleon mass. The contribution to this cor-
rection of the order of M4/Q4 as given in [20] is negligible
in the kinematic range of the data used in this analy-
sis. The target-mass correction is most significant for the
BCDMS data, where it ranges from −1% to +7%. The rel-
ative average value (RAV) of this correction, defined as the
mean of the ratio of the absolute value of the correction to
the statistical error, is 0.16 for the BCDMS data set. Note
that our way of introducing this correction differs from the
simple approximate ansatz FTMC

2 (x, Q) = F2(ξ, Q) used
in [21] (since we perform the complete integrals shown
above). In our case the TMC exhibits cross-over from neg-
ative to positive values at x ≈ 0.5 instead of x ≈ 0.4 as
in [21]. Our correction also differs in magnitude (with a
maximal difference of about 4%). For the NMC data this
correction is significantly smaller (range [−1%, 0%], the
RAV is 0.05). For the ZEUS and H1 data, the TMC cor-
rection is absolutely negligible.

2.4.2 Reduction to a common R = σL/σT

The usual practice in global fits of the DIS data is to use
only the information on F2 as experimental input. In this
analysis, since the fit is performed to the measured cross
sections, a model for the value of R = σL/σT is needed.
We calculate R as the sum of the NLO contribution from
the light quarks and gluons, corrected for the target-mass
effects2:

R(x, Q) =
4M2x2

Q2 FTMC
2 (x, Q) + FTMC

L (x, Q)

FTMC
2 (x, Q) − FTMC

L (x, Q)
,

where

FTMC
L (x, Q) = FL(x, Q) +

x2

τ3/2

F2(ξ, Q)
ξ2 (1 − τ)

+
M2

Q2

x3

τ2 (6 − 2τ)
∫ 1

ξ

dz
F2(z, Q)

z2 ,

FL(x, Q) =
αs(Q)

2π

8
3
x2
∫ 1

x

dz

z3

[
F2(z, Q) + (z − x)G(z, Q)

]
.

The value of R is calculated iteratively in the fit, for ev-
ery new set of PDF parameters (its final form is given in
Fig. 1). Essentially, our procedure reduces the data on F2
given in the original experimental papers to a common
value of R. This reduction is most important at the small-
est x region in each experiment. For the BCDMS data
the value of the reduction correction is in the range of
[−3.5%, 0%], the RAV of the the R correction is 0.10. The
BCDMS collaboration has calculated R from pQCD pre-
dictions, but used larger gluon distributions than in our
final set. For the NMC data the RAV of this correction
is 0.10 (range [−1.5%, 2%]). For the ZEUS data, which
exhibit the highest sensitivity to the choice of R at some

2 The contribution from c and b quarks to the value of R has
a negligible effect on the results of the fit
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Fig. 1. R = σL/σT calculated using our extracted PDF pa-
rameters (solid line) and the band of R1990

SLAC of [22] (dashed
lines) at Q2 = 9GeV2

Table 2. The fitted PDF parameters with total experimental
errors (both statistic and systematic)

Valence au 0.745 ± 0.024
bu 3.823 ± 0.069
γu
2 0.56 ± 0.28

ad 0.876 ± 0.066
bd 5.32 ± 0.22

Glue aG −0.267 ± 0.043
bG 8.2 ± 1.5

Sea AS 0.159 ± 0.036
asd −0.1885 ± 0.0072
bsd 7.5 ± 1.3
ηu 1.0 ± 0.12
bsu 10.61 ± 0.96
ηs 0.5 ± 1.0

αs(MZ) 0.1146 ± 0.0018

points due to the large span in the lepton scattering vari-
able y, this correction ranges from −3% to 0% with the
RAV of 0.04. The H1 data are affected to the same extent
on average.

In summary, we note that although the R correction
is not very large on average, it is significant for the data
points on the edge of the experimental acceptance. Since
at small x the value of R is heavily dependent on the gluon
distribution, our approach imposes additional constraints
on its value. The uncertainty in the value of the cross
sections, which originates from the change of the radiative
corrections for a different value of R, is usually accounted
for in the corresponding systematic errors specified by the
experimental groups, and the residual effects are believed
to be small.

Fig. 2. The description of the BCDMS data with our PDFs.
The data and curves are scaled by a factor of 1.211−i, where i
runs from 1 for the highest x bin to 11 for the lowest one

2.4.3 Fermi motion correction for deuterium

The deuterium data are corrected for the Fermi motion
using the procedure of [23] with the Paris wave function
for deuterium [24]. This correction is also calculated iter-
atively to obtain a fully consistent set of PDFs. For the
calculation of the relevant integrals we use a program [25],
which exhibits a better numerical stability than the stan-
dard procedures based on the simple Gaussian algorithm.
The value of R = σL/σT for the deuteron was adopted
to be unchanged under this correction; we have checked
that this assumption is of minor importance for the final
results. The Fermi motion correction is maximum at large
x, ranging from −2% to +15% for the BCDMS data and
from −2% to −1% for the NMC data, and its RAV is
about 0.6 for both experiments.

3 Results

The fitted central values with total (statistical and sys-
tematic) experimental errors of the adjustable PDF pa-
rameters extracted from the minimization of (1) are given
in Table 2. The full correlation error matrix is given in
Table 3. To decrease the model dependence in our pre-
dictions, we calculate the covariance matrix of the fitted
parameters for ηu and ηs as free parameters, although the
values of these parameters used in the calculations have
been kept intact, i.e. equal to 1 and 0.5, respectively.

The resulting χ2 values are given in Table 1. On aver-
age the model describes the data fairly well. For a detailed
analysis of the statistical consistency of the results we cal-
culate the diagonalized residuals bD

i using the relations

bD
i =

N∑
j=1

Dij(fj − yj),
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Fig. 3. The same as in Fig. 2 for the NMC data (i runs from
1 to 12). For presentation purposes only we show combined
energy bins

Fig. 4. The description of the H1 data with our PDFs. The
data and curves are shifted by 5.1 − 0.3i, where i runs from 1
for the highest x bin to 16 for the lowest one

where Dij is the square root of the positively defined error
matrix Eij . It can be shown that under the assumptions
made in Sect. 2.2 these residuals are not correlated, and
have averages of zero with dispersions equal to 1. The dis-
tributions of these residuals for each experiment are given
in Fig. 6. The average values are given in Table 1. The
average of bD over all experiments is well below its esti-
mated standard deviation (≈ 1/(NDP)1/2 ∼ 0.03), which
supports the expectation that our estimator is asymptot-
ically unbiased.

It can be seen that while the BCDMS and H1 residu-
als are in good agreement with the Gaussian distribution,

Fig. 5. The description of the ZEUS data with our PDFs. The
data and curves are shifted by 4.5 − 0.3i, where i runs from 1
for the highest x bin to 14 for the lowest one

the NMC and especially the ZEUS residuals show visible
deviations from the curves. These discrepancies are a di-
rect consequence of the poorer description of the NMC
and ZEUS data by our PDF fit. Note that the averages
of the residuals for ZEUS and NMC do not significantly
contribute to χ2. It is difficult to ascribe these deviations
to the shortcoming of the theoretical model, because in
this case one is to suppose that the ZEUS and NMC
data have some additional fluctuations compared with the
BCDMS and H1 data. (The two sets of data sets have a
similar statistical significance and are in a similar kine-
matic region.) One possibility is that the errors are under-
estimated (but maybe remain Gaussian). The procedure
used in similar cases by PDG [19] is to scale the errors so
that χ2/NDP equals unity. This recipe improves the sit-
uation with the NMC data, but is unsuccessful for ZEUS
(see dashed curves on Fig. 6). Driven by this observa-
tions one can suppose that systematic errors of the ZEUS
data (and maybe of the NMC data), follow non-Gaussian
distributions (but with zero average values). In this case
the extracted PDF parameters would not follow the Gaus-
sian distribution, and the standard rule for the evaluated
confidence level becomes invalid. We cannot be sure of
the non-Gaussian nature of the experimental fluctuations.
However, given the indications above, we prefer to use
in the following a more robust estimate of the confidence
level, based on the Chebyshev’s inequality3 [26]. It may
be worthwhile to scale the errors of the ZEUS and NMC
data. However, since these experiments have a number of
independent sources of the systematics which contribute
to the results of the fit in a nontrivial combination, this
procedure is not straightforward.

3 This approach can be recommended for most phenomeno-
logical investigations if the Gaussian distribution of the exper-
imental values is not proven, e.g. in the case discussed in [27]
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Table 3. The correlation matrix of the fitted PDFs parameters

au bu γu
2 ad bd AS asd bsd ηu bsu ηs aG bG αs(MZ)

au 1.000 -0.731 -0.904 -0.365 -0.430 0.000 0.508 -0.352 0.389 0.576 -0.034 -0.260 -0.184 0.113
bu -0.731 1.000 0.917 0.201 0.258 0.012 -0.303 0.168 -0.251 -0.564 -0.020 0.198 0.250 -0.239
γu
2 -0.904 0.917 1.000 0.360 0.410 0.058 -0.425 0.298 -0.392 -0.695 0.040 0.262 0.260 -0.083

ad -0.365 0.201 0.360 1.000 0.965 -0.143 -0.057 0.933 -0.798 -0.614 -0.114 0.069 0.093 -0.064
bd -0.430 0.258 0.410 0.965 1.000 -0.148 -0.072 0.870 -0.702 -0.554 -0.105 0.059 0.080 -0.117
AS 0.000 0.012 0.058 -0.143 -0.148 1.000 0.286 -0.335 0.091 0.273 0.988 0.391 0.667 0.503
asd 0.508 -0.303 -0.425 -0.057 -0.072 0.286 1.000 -0.119 0.270 0.533 0.291 -0.132 0.224 -0.007
bsd -0.352 0.168 0.298 0.933 0.870 -0.335 -0.119 1.000 -0.865 -0.617 -0.298 0.036 -0.003 -0.197
ηu 0.389 -0.251 -0.392 -0.798 -0.702 0.091 0.270 -0.865 1.000 0.725 0.101 -0.243 -0.209 0.019
bsu 0.576 -0.564 -0.695 -0.614 -0.554 0.273 0.533 -0.617 0.725 1.000 0.329 -0.180 -0.066 0.060
ηs -0.034 -0.020 0.040 -0.114 -0.105 0.988 0.291 -0.298 0.101 0.329 1.000 0.372 0.640 0.483
aG -0.260 0.198 0.262 0.069 0.059 0.391 -0.132 0.036 -0.243 -0.180 0.372 1.000 0.784 0.109
bG -0.184 0.250 0.260 0.093 0.080 0.667 0.224 -0.003 -0.209 -0.066 0.640 0.784 1.000 0.006
αs(MZ) 0.113 -0.239 -0.083 -0.064 -0.117 0.503 -0.007 -0.197 0.019 0.060 0.483 0.109 0.006 1.000

Fig. 6a–d. The distribution of the diagonalized residuals for
the a) BCDMS, b) NMC, c) H1 and d) ZEUS experiments.
The solid curves correspond to the Gaussian distribution with
zero average and unit dispersion. The dashed curves corre-
spond to the Gaussian in which the average and the dispersion
are calculated from the distribution of the residuals. All curves
are normalized to the number of entries in each histogram

The principal difference of our analysis from the other
global fits is that we do not renormalize the data sam-
ples. Note that in other analyses the BCDMS data are
usually shifted down. Therefore, our fits to F2 are slightly
higher at large x. All data for F2 (corrected to the com-
mon value of R) are compared to our fit in Figs. 2–5.
Here the error bars correspond to the sum of statistics
and systematics (added in quadrature). Our fits are com-

Fig. 7. The gluon distribution extracted in our analysis. The
solid lines correspond to Q2 = 9GeV2, the dashed ones to
Q2 = 10, 000GeV2. The dotted line and dashed lines show the
predictions of the MRS(R1) and CTEQ4M PDFs (at Q2 =
9GeV2), respectively

pared to a few selected set of standard PDFs in Figs. 7–10.
The strange sea is not shown because only a weak upper
limit can be extracted from this set of data. As previously
mentioned, the distributions of our PDF parameters are
defined mainly by the distributions of the systematic un-
certainties. Therefore, there is a possibility that these may
be non-Gaussian. In this case it is better to use Cheby-
shev’s inequality to extract more robust estimates for the
error bands. The bands given in the figures are two stan-
dard deviations contours, which correspond to a robust
confidence level larger than 75%.

Prompt photon data were not used in our analysis.
Such data are often used to constrain the gluon distri-
bution at moderate x. In our analysis, the gluon distri-
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Fig. 8. The same as in Fig. 7 for the nonstrange sea

Fig. 9. The same as in Fig. 7 for the up and down quarks

Fig. 10. The same as in Fig. 7 for the non-strange sea asym-
metry

bution is determined rather well in the kinematic region
x = [0.0001, 0.5], with better precision than in an ear-
lier analysis [28]. This has been achieved by incorporat-
ing data on F2 at small x. The small x data define the
gluon distribution in that region, and provide the mo-
mentum constraint to determine the distribution at larger
x as well. The quark distributions are determined more
precisely. However, it should be pointed out that the ex-
tracted PDFs and errors are model dependent. For ex-
ample, if the condition asu = asd = ass is relaxed, it
significantly increases the errors of the sea distribution at
small x. An analogous effect arises if additional polyno-
mial terms are added to the initial PDF parametrizations.
This kind of model dependence is inevitable because it is
not possible to determine a continuous functional form of
the distributions with only a limited set of measurements
(without additional constraints). The dependence on the
functional form of the initial PDFs is more pronounced for
the quark distributions than for the gluons or for αs(MZ).
The main reason of this difference is that only the sum of
the sea and the valence quarks is constrained by the F2
measurements . Therefore, these data are more limited in
the ability to discriminate between different PDFs. In con-
trast, the gluon distribution and αs(MZ) are defined by
the derivatives of F2, which are less sensitive to the varia-
tion in the contributions from the various quarks. Conse-
quently, the correlation coefficients between PDF parame-
ters corresponding to the quark distributions are generally
larger than for the gluons (as shown in Table 3). At small
x and large Q a shrinking in the error bands of the ex-
tracted gluon distribution is observed. This reflects the
well-known property of the DGLAP kernel that the dom-
inance for it of the singular terms leads to a focusing of
any input gluon distribution to the universal form of [29].

For comparison the MRS(R1) [2] and CTEQ4M [4]
parametrizations are also shown in the figures. This com-
parison is of limited importance because the other PDFs
do not have any error bands. However, it can be assumed
that the error bands for the MRS and CTEQ PDFs are
smaller than for our analysis, because more experimen-
tal data have been included in the analyses by these two
other groups. We observe a statistically significant differ-
ence between our gluon distribution with that from the
MRS and the CTEQ fits at large x. This difference may be
ascribed to the inclusion of prompt photon data in these
other analyses. It has recently been recognized in [30] that
the interpretation of the prompt photon data is suspect,
because of large effects from multiple initial-state gluon
radiations. An alternative analysis of the prompt photon
data with the improved theoretical treatment of these ef-
fects [31] yields a much lower gluon distribution at mod-
erate x, which is more compatible with ours. The discrep-
ancies in the d quark and, to a lesser extent, the u quark
distributions at moderate x may partially be explained
by the influence of the target mass and the Fermi motion
corrections. Taking into account the nucleon-binding ef-
fects in deuterium (this was not done in our analysis) can
even more increase the d quark distribution at large x (see
[32]). Meanwhile we can estimate that this increase would
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be within the quoted errors, because the data used in our
analysis do not span the region of very large x or have
large errors there. It should be noted that the larger val-
ues of the quark distributions in this region of x may help
to explain the excess of high transverse momentum jets
in recent Fermilab collider data (above the NLO QCD
predictions). This excess is observed in the ET = 200–
400 GeV region, where the contribution from quark–quark
scattering (viz. [2,4]) is important. It may be that some
of the discrepancies also originate from possible numerical
inaccuracies in the QCD evolution codes reported recently
in [17] and in a difference between the extracted values of
αs. The difference in the sea distribution at x ∼ 0.3 is
not statistically significant and may disappear after the
inclusion of more data in the analysis.

The robust estimate of the value of αs(MZ) from this
analysis of

αs(MZ) = 0.1146 ± 0.0036 (≥ 75% C.L.),

is higher, but compatible with that extracted from the
original SLAC-BCDMS analysis [33]. It is less sensitive
to the higher-twist contribution because of the stringent
cut on Q2 and W . The estimate of αs(MZ) has a weak
model dependence, i.e. it is not changed much if the PDF
functional form is changed from (2) to our final form. Our
value of αs(MZ) is lower than the world average. The dif-
ference is not very significant, especially if one uses a ro-
bust estimate. At the same time it may indicate additional
systematic errors on the BCDMS data, since these data
basically define the value of αs.

4 Conclusion

The Bayesian treatment of systematic errors is a clear and
efficient method for the analysis of data with numerous
sources of systematic errors, and for DIS scattering data
in particular. The approach allows for the straightforward
and correct account of point-to-point correlations as op-
posed to the widely used “simplification”, which consists
of combining statistical and systematic errors in quadra-
tures. The concerns that the estimator using the covari-
ance matrix suffers from possible bias is not relevant if
the covariance matrix is constructed using the predicted
averages (instead of the measured quantities).

This is the first time that quark and gluon distribu-
tions have been extracted from a global fit with full ac-
count of all statistical and systematic experimental errors.
These extracted PDFs are useful in further phenomeno-
logical studies. Having a procedure that yields estimates
of PDF error bands enables us to perform comparisons of
various global fits, and of PDFs extracted from different
processes. In addition, the calculation of theoretical cross
sections for various processes (which are based on PDFs)
are more meaningful if one is able to correctly account for
the uncertainties from the PDF parametrizations.
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